

13 April 2022

ASX Release

DIAMOND DRILLING SCHEDULED AT WISEMANS CREEK PROJECT NSW

The drill programme aims to both validate historical holes, and extend mineralised horizons

Orange Minerals NL (ASX: OMX) ("Orange" or "the Company") is pleased to announce that it has secured a drill rig and plans to commence drilling at the Wisemans Creek Project (Wisemans) in NSW at the end of April 2022.

Orange recently signed a binding term sheet to acquire Wiseman's Creek (EL 8554) & Ophir (EL 8323) tenements from Godolphin Resources Ltd (ASX: GRL) for a total consideration of \$550k, payable in cash (50%) & equity (50%) in Orange.

Drill rig, support crew and geologists are planning to arrive on site at Wisemans at the end of April 2022.

A diamond drill programme of approximately 600 metres is planned with drilling designed to follow up a number of historical drill holes around the Black Bullock Prospect.

Drilling aims to validate historical drill holes and look to extend mineralised horizons previously intersected.

Commenting on the start of drilling at Wisemans, Managing Director David Greenwood commented

"The Phase 1 drilling programme to soon commence at Wisemans is planned to follow up on historical holes around the Black Bullock Prospect where there are historical workings and elevated gold values in RC/DD drillholes."

About Wiseman's Creek

At the time of the IPO of Orange in December 2021, Wisemans Creek (EL 8554) was an earn in Joint Venture agreement with Godolphin Resources Ltd, whereby Orange can earn up to 70% of the Project.

In March 2022 Orange signed a binding Heads of Agreement with Godolphin to purchase 100% of the Wisemans Creek tenement (EL8554) and Ophir (EL8323) for \$550k (50% cash & 50% equity).

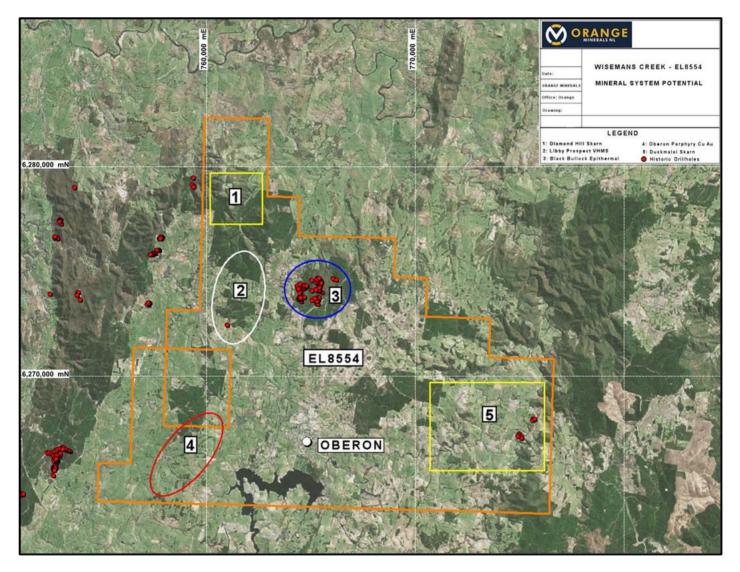


Figure 1- Location Map - Wisemans Creek Project with various mineral deposit target types

Geology

The Wiseman's Creek area forms part of the Ordovician-Early Silurian Macquarie Arc, Early Devonian Hill End Trough and Carboniferous Intrusions.

The Tarara granite (part of the Carboniferous Bathurst Batholith) forms an arcuate belt within the far northern part of the tenement. Other granites of the Bathurst Batholith (Oberon and Duckmaloi granites) have intruded into the southern and eastern part of the tenement. Belts of sediments and volcanics of the Macquarie Arc and Hill End Trough are interspersed between the intrusives.

In the eastern part of the tenement, there is a corridor of north-northeast trending dyke-like features. These features extend approximately 20 km north and south of the tenement boundaries.

The main structural fabric within the tenement trends north south, with faulting and folding related to the compression and closure of the sedimentary basins. Numerous alteration styles have been noted dependant on the mineralisation style.

Deposit Type and Mineralisation

The tenement has the potential for a range of mineral systems including Orogenic Gold, VHMS, Porphyry Cu-Au and Polymetallic Skarn (see Figure 1). Numerous significant historical workings are present within the tenement, including the Black Bullock (Orogenic Au), Duckmaloi (Bi Skarn), Oberon Prospect (Porphyry Cu – Au) and Libby Prospect (VHMS).

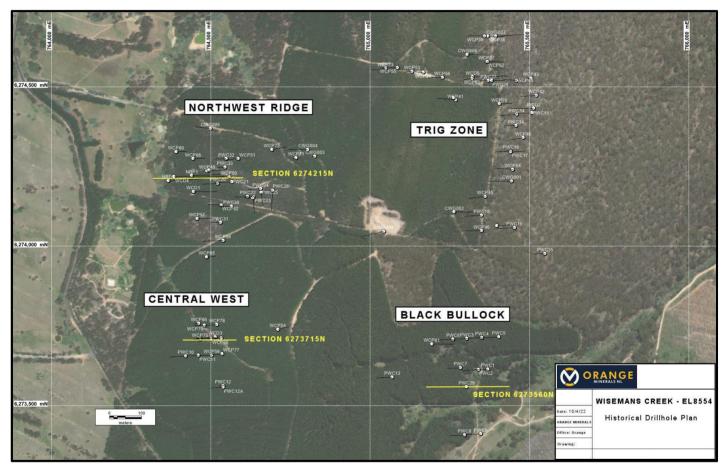


Figure 2- Historical Drillhole Plan – Wisemans Creek Project

Planned Drilling Programme Wisemans Creek

The Black Bullock project area is the most significant zone of anomalism in EL8554 and contains several historical workings. Historic production from the Black Bullock mine was 2,098oz gold and 40,000oz of silver from 4,700t of ore (Maniw 1995). Four main gold bearing areas are Northwest Ridge, Trig Zone, Central West and Black Bullock (see Figure 2).

Mineralisation at Black Bullock is thought to be epithermal in nature and dominated by pyrite (with gold and silver), and associated with arsenopyrite, pyrrhotite, stibnite, galena, sphalerite and lesser chalcopyrite. Alteration surrounding mineralisation is mainly cherty silicification extending, discontinuously, across the project area. The silicification is associated with interpreted fold troughs and crests where stacked repetitions are indicated at depth by drilling.

Orange Minerals plans to drill five diamond holes under the significant historical holes to validate previous intercepts and test for further extensions of the mineralisation. The holes will be drilled on existing sections 6274215N, 6273715N and 6273560N to test significant intercepts in holes NRD1, WCD4, NRP1, WCP60 and PWC29 (see Figures 3 – 5). All areas have limited drilling and the mineralisation has not been fully tested.

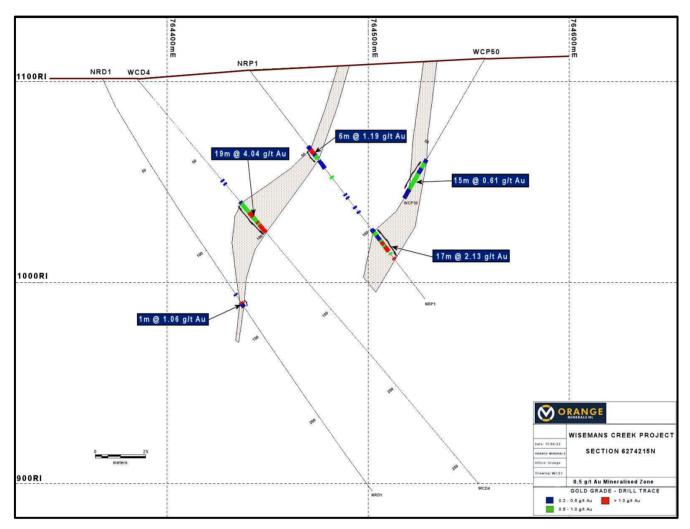


Figure 3- Historical Drilling Section 6274215N – Wisemans Creek Project

Historical Drilling Results

Gold was discovered in the area in 1896 and extensive exploration has been completed in the area since 1983. The bulk of the work was conducted by BP Minerals and Windsor Resources between 1984 and 1989, with gridding, mapping, soil / rock sampling and ground geophysics. BP Minerals drilled 35 RC holes and Windsor Resources completed 44 RC and 5 diamond holes. A total of 94 holes for 8983.6m have been drilled by all companies.

Significant mineralisation was intersected in a number of drill holes (see Appendix 1). Drillhole sections are displayed in Figures 3 - 5. Historical hole data is included in Appendix 2.

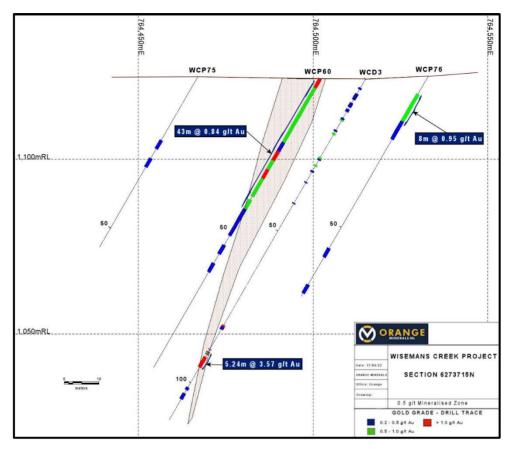


Figure 4- Historical Drilling Section 6273715N – Wisemans Creek Project

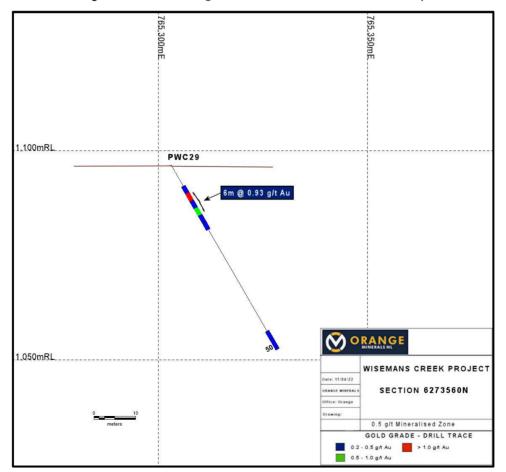


Figure 5- Historical Drilling Section 6273560N – Wisemans Creek Project

25 Colin Street, West Perth WA 6005

This ASX announcement has been authorised for release by the Board of Orange Minerals NL.

-ENDS-

About Orange Minerals NL

Orange Resources NL is an exploration company listed on the ASX (ASX: OMX) with Australian-based projects in the Lachlan Fold Belt (LFB) of NSW and Eastern Gold Fields of WA, both world-class mineral provinces. The LFB of NSW hosts major mines including Cadia/Ridgeway, North Parkes and Lake Cowal and the tenements in the Eastern Goldfields of WA are close to the Daisy Milano gold mine and Black Cat Resources Majestic Project. The Orange Minerals exploration team plan to rapidly explore its tenement packages with aggressive exploration programmes at its key properties. The company is currently focussing on the Calarie & Wisemans Creek Projects in NSW and the Majestic/Kurnalpi tenements in WA.

For further information, please contact: David Greenwood

- A: 25 Colin Street West Perth, WA 6005
- W: www.orangeminerals.com.au

Tel: +61 (08) 6102 2039

- E: <u>contact@orangeminerals.com.au</u>
- T: +61 (08) 6102 2039

Competent Persons Statement

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Phil Shields, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Shields is an employee of Orange Minerals NL and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Shields consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward Statement

This release includes forward – looking statements which involve a number of risks and uncertainties. These froward looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and are based on current assumptions. Should one or more of the uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs or opinions should change.

www.orangeminerals.com.au contact@orangeminerals.com.au

APPENDIX 1: Significant Historical Intercepts (0.5 g/t Au cutoff)

Hole_Id	From_m	To m	Interval_m	Au ppm	Ag_ppm	As_ppm	Cu_ppm	Pb_ppm	Zn_ppm	Au*m	Туре
 CWG001	50	51	1	0.64	2.5	58	33	319	137	0.6	RC
CWG004	9	10	1	0.58	0.2	1060	158	355	420	0.6	RC
CWG006	48	49	1	0.75	1.8	3800	161	336	87	0.8	RC
NRD1	131	132	1	1.06	29	123	3300	10600	218	1.1	DDH
NRP1	50	56	6	1.19	33	681	1235	1511	1060	7.1	RC
NRP1	67	68	1	0.59	NA	NA	NA	NA	NA	0.6	RC
NRP1	102	119	17	2.13	65	11916	2752	7013	8802	36.2	RC
PWC6	90	92	2	0.68	1	1735	55	199	389	1.4	RC
PWC11	2	12	10	0.85	1	707	92	969	176	8.5	RC
PWC11	44	46	2	0.51	0	372	10	48	51	1.0	RC
PWC14	30	44	14	2.25	4	3557	10	638	197	31.5	RC
PWC14	62	64	2	1.50	1	3741	68	193	77	3.0	RC
PWC16	36	38	2	0.55	0	854	100	325	0	1.1	RC
PWC10 PWC17	52	54	2	0.55	3	1408	100	599	23	1.1	RC
PWC17	80	82	2	0.62	3	1408	90	2171	44	1.3	RC
PWC19	24	26	2	0.60	0	366	16	637	14	1.2	RC
PWC13	74	86	12	3.10	77	1872	1058	2357	3056	37.2	RC
PWC21 PWC25	60	66	6	0.87	168	335	7989	17313	20247	5.2	RC
		68	2		2	640					RC
PWC28	66			0.50			NA	50	NA	1.0	
PWC28	78	82	4	0.55	1	360	NA	53	NA	2.2	RC
PWC29	8	14	6	0.93	3	140	NA	390	NA	5.6	RC
PWC33	16	28	12	1.57	11	2263	NA	1883	NA	18.8	RC
PWC34	6	8	2	0.50	0	780	NA	105	NA	1.0	RC
PWC34	30	32	2	2.90	0	380	NA	720	NA	5.8	RC
WCD3	90.26	95.5	5.24	3.57	4	325	63	279	321	18.7	DDH
WCD4	81	100	19	4.04	15	611	1379	3779	911	76.8	DDH
WCD5	124	130	6	0.69	1	3487	8	17	53	4.1	DDH
WCD5	135	136	1	0.90	2	360	20	40	30	0.9	DDH
WCP41	13	15	2	0.50	1	210	147	178	22	1.0	RC
WCP41	18	20	2	0.66	1	1310	483	1470	52	1.3	RC
WCP41	38	49	11	1.22	3	3694	435	687	410	13.4	RC
WCP41a	20	26	6	0.54	2	950	253	790	44	3.2	RC
WCP41a	69	72	3	0.95	7	540	656	1086	550	2.9	RC
WCP44	51	73	22	1.22	1	2811	84	102	120	26.8	RC
WCP47	98	101	3	0.54	20	4340	633	1440	590	1.6	RC
WCP49	15	17	2	0.90	2	1130	285	850	80	1.8	RC
WCP49	22	25	3	0.52	8	2150	316	1875	39	1.6	RC
WCP49	49	53	4	1.92	19	1695	786	2658	112	7.7	RC
WCP50	60	75	15	0.61	10	1190	367	376	57	9.2	RC
WCP55	74	80	6	1.49	2	3740	100	7050	26	8.9	RC
WCP60	0	43	43	0.84	2	673	68	1007	260	36.1	RC
WCP62	9	15	6	0.57	0	250	60	133	92	3.4	RC
WCP62	18	21	3	0.77	0	126	31	90	54	2.3	RC
WCP62	39	42	3	0.78	1	69	23	39	41	2.3	RC
WCP62	60	63	3	0.50	0	111	44	43	113	1.5	RC
WCP62	66	69	3	0.70	0	310	41	210	181	2.1	RC
WCP62	84	87	3	2.80	0	480	29	36	499	8.4	RC
WCP63	0	3	3	0.50	0	963	74	794	207	1.5	RC
WCP64	78	81	3	0.72	0	240	71	164	38	2.2	RC
WCP67	15	33	18	0.79	3	2505	258	2223	113	14.2	RC
WCP67	36	37	1	0.69	2	460	129	373	34	0.7	RC
WCP70	29	38	9	1.55	3	2975	126	358	28	14.0	RC
WCP75	23	24	1	0.68	1	110	10	60	65	0.7	RC
WCP76	7	15	8	0.95	1	420	80	430	128	7.6	RC
WCP78	0	6	6	0.79	0	260	40	455	100	4.7	RC
WCP79	56	58	2	1.45	1	375	52	310	180	2.9	RC
WCI 73	50	50	<u> </u>	1.73		575	52	310	100	2.5	ne

APPENDIX 2: Historical Drillhole Collar Coordinates

Hole_Id	Easting	Northing	RL	Depth	Dip	Azim
CWG001	765444	6274204	1158.00	150	-60	270
CWG002	765264	6274107	1153.00	120	-60	90
CWG003	764827	6274282	1129.00	18	-60	270
CWG004	764805	6274303	1126.00	120	-60	270
CWG005	764499	6274369	1115.00	145	-70	276
CWG006	765305	6274601	1116.00	62	-60	86
CWG007	765395	6274659	1127.00	150	-60	86
CWG008	765043	6274046	1164.00	197	-75	256
NRD1	764368	6274205	1101.51	245	-65	87
NRP1	764441	6274221	1105.93	144	-52.5	87
PWC1	765370	6273614	1094.39	85	-60	267
PWC10	764422	6273655	1124.59	96	-60	267
PWC11	764462	6273657	1124.48	93	-60	267
PWC12	764539	6273562	1128.91	21	-60	267
PWC12A	764539	6273557	1128.91	81	-60	267
PWC13	765070	6273589	1117.60	99	-60	267
PWC14	765460	6274413	1118.64	99	-60	267
PWC15	765508	6274418	1121.74	99	-60	267
PWC16	765442	6274298	1141.98	99	-60	267
PWC17	765442	6274296	1141.98	87	-60	87
PWC18	765350	6274097	1152.26	105	-60	267
PWC19	765453	6274058	1161.76	105	-60	267
PWC2	765340	6273613	1095.78	105	-60	267
PWC20	764522	6274197	1109.61	98	-60	267
PWC21	764566	6274202	1114.23	104	-60	267
PWC22	764616	6274156	1119.70	80	-60	267
PWC23	764635	6274155	1122.60	56	-60	267
PWC24	764657	6274180	1122.72	80	-60	267
PWC25	764658	6274169	1122.72	82	-60	172
PWC26	764692	6274176	1126.54	80	-60	267
PWC27	765371	6274519	1103.37	63	-60	269
PWC28	765381	6274519	1103.37	82	-60	90
PWC29	765303	6273559	1096.67	51	-60	90
PWC3	765304	6273710	1101.98	91	-60	267
PWC30	764565	6274125	1116.56	80.5	-60	270
PWC31	764531	6274074	1118.26	68	-60	270
PWC32	764549	6274274	1109.79	69	-60	269
PWC33	764545	6274248	1113.24	45	-60	269
PWC34	765458	6274378	1125.98	75	-60	269
PWC35	765549	6273977	1149.24	69	-60	267
PWC4	765351	6273713	1100.31	102	-60	267
PWC5	765404	6273715	1100.79	110	-60	267
PWC6	765260	6273708	1104.84	96	-60	267
PWC7	765284	6273619	1099.25	81	-60	267
PWC8	765297	6273408	1106.59	93	-60	267
PWC9	765347	6273411	1101.61	93	-60	267
WCD1	764446	6274171	1106.08	146.7	-60	90
WCD2	765514	6274432	1121.74	144	-60	270

Hole_Id	Easting	Northing	RL	Depth	Dip	Azim
WCD3	764515	6273715	1123.08	112.87	-60	266
WCD4	764385	6274218	1101.51	263.65	-50	88
WCD5	765322	6274531	1113.16	212.35	-60	90
WCP37	765366	6274579	1107.53	53	-70	145
WCP38	765370	6274659	1109.14	102	-60	90
WCP39	765359	6274659	1109.14	100	-60	271
WCP40	765481	6274340	1138.72	104	-60	262
WCP41	765268	6274458	1123.82	71	-60	273
WCP41A	765261	6274465	1129.22	99	-60	268
WCP42	765522	6274473	1104.26	100	-60	265
WCP43	765505	6274527	1095.57	100	-60	264
WCP44	765459	6274520	1095.00	82	-60	274
WCP45	765361	6274156	1150.76	99	-60	263
WCP46	765350	6274048	1151.47	103	-60	270
WCP47	764695	6274175	1126.54	123	-60	185
WCP48	764632	6274151	1122.60	96	-60	174
WCP49	764489	6274236	1107.51	85	-60	87
WCP50	764558	6274217	1111.34	80	-60	268
WCP51	764587	6274274	1110.66	92	-60	266
WCP52	764534	6274129	1114.86	83	-60	272
WCP53	765132	6274548	1027.74	50	-60	267
WCP54	765167	6274545	1030.01	29	-58	269
WCP55	765086	6274560	1029.39	104	-60	269
WCP56	765227	6274529	1038.55	93	-60	269
WCP57	764458	6274086	1111.20	108	-60	88
WCP58	764539	6274018	1118.74	128	-60	268
WCP59	764503	6273658	1124.69	99	-60	270
WCP60	764502	6273710	1123.08	95.5	-60	270
WCP61	765194	6273693	1107.81	137.5	-60	90
WCP62	765368	6274579	1107.53	105	-60	92
WCP63	765320	6274526	1113.16	51	-60	262
WCP64	765448	6274241	1147.26	99	-60	273
WCP65	764488	6273966	1116.46	54	-60	85
WCP66	764463	6273758	1120.45	27	-60	265
WCP67	764495	6274238	1107.51	81	-90	0
WCP68	764445	6274274	1104.25	73	-60	87
WCP69	765398	6274064	1158.25	81	-60	86
WCP70	765406	6274446	1108.76	75	-60	87
WCP71	764768	6274277	1113.30	21	-60	256
WCP72	764692	6274303	1110.36	93	-60	80
WCP73	765049	6274558	1131.85	84	-60	263
WCP74	764711	6273739	1140.08	69	-60	77
WCP75	764467	6273708	1123.69	56.5	-60	267
WCP76	764533	6273712	1123.88	73	-60	267
WCP77	764536	6273662	1125.11	73	-60	266
WCP78	764520	6273754	1123.99	78	-60	267
WCP79	764480	6273752	1121.83	59	-60	270
WCP80	764392	6274296	1100.48	62	-60	88

APPENDIX A:

JORC CODE (2012)

TABLE 1.0 REPORT

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling Techniques	 Nature and quality of sampling (e.g., cut channels, random chips or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are material to the public report. In cases where 'industry standard' work has been this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverized to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	RC sampling of the BP Minerals and Windsor Resources drill programs involved 1m intervals from a cyclone and then split on site to 4kg. The 4kg sample was pulverized to minus 200 mesh before additional splitting and pulverizing to generate a 30g analytical charge. Gold, silver, arsenic, copper, lead and zinc were determined by AAS techniques. Samples were analysed at the accredited Orange ALS laboratory in 1985. RC drilling conducted by Central West Gold in 2010, involved sampling through a 1/8" 3-tiered splitter. Wet samples were sampled with a PVC spear. Duplicate RC samples were collected every 40m down the hole. Samples were analysed at ALS Chemex in Orange for Au by method Au-AA25 (30g Fire Assay) and for Ag, As, Cu, Pb and Zn by method ME-ICP41 (Aqua Regia digest, ICP finish). Industrial standard practices were conducted to ensure a representative sample was obtained. Reference material in the form of duplicates and certified standards were inserted into the batches. All intervals were geologically logged by a geologist during the drilling.
Drilling Techniques	• Drill type (e.g., core, reverse circulation, open hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face sampling bit or other type, whether core is orientated and if so, by what method, etc.).	A range of drill types (predominantly RC and diamond drilling) have been historically utilised at the Black Bullock project. Equipment used included a Schramm drill rig for the RC work and a Warman Universal 1000 drill rig for diamond drilling.

ASX:OMX

Criteria	JORC Code Explanation	Commentary
Drilling Sampling Recovery	 Method of recording and accessing core and chip sample recoveries and results accessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss / gain of fine / coarse material. 	Both the diamond core and percussion drill chips were collected in one metre samples. A 1 -2kg analytical sample was collected using the face splitter on the drill rig. A diamond saw was used to obtain one half core for analysis, with the other half retained for reference. The competent person considers the historical sampling recovery and sampling methods were suitable to allow the determination of a representative grade in the mineralised zones.
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	Historical RC chips were routinely logged to a suitable standard for defining the geological features including lithology, mineralisation, alteration etc. The Competent Person considers the quality of the logging for historical programs to be appropriate for the style of mineralisation.
Sampling Techniques	 Nature and quality of sampling (e.g., cut channels, random chips or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	All RC samples were split through a cyclone. Sufficient sample was collected in the calico bags for analytical determination with the bulk of the sample reporting to large plastic bags for retention.

25 Colin Street, West Perth WA 6005

ASX:OMX

Criteria	JORC Code Explanation	Commentary
Sub Sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	Diamond core was logged and cut in half with one half sent for assay and the other half retained. All RC holes were sampled and split every 1m using a splitter to produce a sample between 1.5 to 4kg sub sample for submission to the Laboratory in Orange.
	 Quality control procedures adopted for all sub sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate / second half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	The sample sizes are appropriate to the grain size of the material been sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc. 	All samples were dispatched to Orange AAL laboratory for sample preparation. The samples were pulverized to a nominal 95% passing 75 microns. For a first path analysis, both the drill core as well as RC chips were composited by AAL into 4m sample intervals. Individual one metre sample intervals from composites samples with significant gold values (>0.25 g/t) were reanalysed by AAL. Standard reference material was inserted to gauge assaying accuracy in the batches. Duplicates were regularly conducted.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Logged drillholes were reviewed by a Senior geologist. No twinning of holes was undertaken. There was no adjustment to assay data.

Criteria	JORC Code Explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down hole surveys), trenches, mine workings and other locations used in Mineral Resource Estimation. Specification of the grid system used. Quality and accuracy of topographic control. 	BP Minerals and Windsor Resources used a local mine grid for sampling and drilling in the project area. Collar coordinates were converted to GDA94, Zone 55 grid system. Drill hole collars were surveyed. Downhole surveys were completed by the drill contractor on the diamond holes every 30m down the hole. Many of the early RC holes were only surveyed at the collar.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure (s) and classification applied. Whether sample compositing has been applied. 	The historic drillholes were drilled on a local mine grid. The planned drilling by Orange Minerals will be on existing section lines. Drilling is wide spaced and would require infilling prior to any future resource estimates.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structure is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Historical drillholes were drilled predominantly east or west on the grid. As a result, some historical holes appear to be drilled down the dip of the interpreted mineralisation. Future drilling will be orientated in a suitable direction to properly test the mineralised zones.
Sample security	The measures taken to ensure sample security	No samples exist from the historical drilling. Drill samples from the planned Orange Minerals program will be stored at a secure facility.

Section 2: Reporting of Exploration Results

(Criteria listed in the previous section also apply to this section)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name / number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	The Wisemans Creek project area is covered by EL8554 that is 100% held by Orange Minerals NL. The tenement has an area of 255.15km ² and is centered on the township of Oberon. The project area lies within the Blenheim State Forest. The tenement is currently in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Modern exploration commenced in 1983 when Newmont was granted EL1989, covering the Black Bullock area, with only minor mapping and rock chip sampling conducted. Australian Occidental Pty Ltd was granted EL2096 in 1983, although very little work was completed at the Black Bullock prospect. In 1984, a joint venture between Australia Occidental and BP Minerals was formed and exploration consisting of gridding, mapping, soil / rock chip sampling and ground geophysics was conducted. Two phases of RC drilling were carried out in 1985. In 1987, BP withdrew from the joint venture and management was taken up by Windsor Resources. A further program of RC and diamond drilling was conducted in 1988. Renison Limited was granted EL3625 in 1990 for a four-year period over the Black Bullock area. Minor exploration, consisting of mapping, stream sediment and soil / rock chip sampling and fluid inclusion studies were completed. In September 1993, EL4584 was granted to Allstate Explorations, who entered a joint venture with SIPA Resources and Michelago NL. Work included reinterpretation of the government airborne geophysical data and RC / diamond drilling.

25 Colin Street, West Perth WA 6005

Tel: +61 (08) 6102 2039

		Drill programs conducted by previous companies are tabulated below.					d below.
		Holes	Number	Туре	Total Length (m)	Year	Company
		PWC1-9	9	RC	856	1985	BP Australia
		PWC10 - 26	17	RC	1564	1985	BP Australia
		PWC27 - 35	9	RC	602.5	1986	BP Australia
		WCD1 - 2	2	DDH	290.7	1988	Windsor Resources
		WCP37 - 66	30	RC	2752	1988	Windsor Resources
		WCD3 - 5	3	DDH	588.87	1988	Windsor Resources
		WCP67 - 80	14	RC	978.5	1988	Windsor Resources
		NRD1	1	DDH	245	1995	Sipa Exploration NL
		NRP1	1	RC	144	1995	Sipa Exploration NL
		CWG001 - 004	4	RC	408	2007	Central West Gold NL
		CWG005 - 008	4	RC	554	2010	Central West Gold NL
		Total	94	Total	8983.57		
Geology Drill hole information	 Deposit type, geological setting, and style of mineralisation. A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all material drill holes. Easting and northing of the drill hole Elevation or RL of the drill hole collar Dip and azimuth of the hole Down hole length and interception depth Hole length 	fine to coarse ac belong to the Sili south of the Mid 94 Historical drill Significant drillho	id tuffs, rhy urian Camp Carbonifer holes (88 ble intercep	volite / ob bells For rous Bath RC and 6 ots (0.5 g,	bsidian and association and lie les	ated sed s than oi	id volcanics, mainly iments. The volcanics ne kilometre to the Appendix 1 and

25 Colin Street, West Perth WA 6005

ASX:OMX

Criteria	JORC Code Explanation	Commentary
Data aggregation methods	 In reporting Exploration results, weighting averaging techniques, maximum and / or minimum grade truncations and cut off grades are usually material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths are reported, there should be stated, and some typical examples of such aggregations should be shown in detail. 	All samples were collected on equal 1m intervals. No high-grade cutting was applied to the intercepts. No metal equivalence has been used. Appropriate rounding of results has been applied.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of the drill hole collar locations and appropriate sectional views. 	Appropriate diagrams displaying the location of drill holes and sections have been included in the release.
Balanced reporting	• Where comprehensive reporting of all Exploration results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration results.	All historical results have been checked against available data and reports. Collar coordinates have been field checked where visible.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations, geophysical survey results, geochemical survey results, bulk samples – size and method of treatment, metallurgical test results, bulk density, groundwater, geotechnical and rock characteristics, potential deleterious or contaminating substances.	This report relates to historical drill data reported from the Wisemans Creek programs by numerous companies. The results and data provided in this announcement add further meaning and understanding to the geological knowledge of the Wisemans Creek Prospect.
Further work	• The nature and scale of planned further work (e.g., tests for lateral or depth extensions or large – scale step out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Orange Minerals plans to drill 500 – 600m of NQ diamond drilling at Wisemans Creek to test previous identified areas of gold and base metal mineralisation in previous drilling. Further work will be based on the result of this program.

Tel: +61 (08) 6102 2039